Given the PDA π = ({π1, π2}, {0, 1}, {#, π΅, πΊ}, Ξ, π1, #, β
)
(empty-cell acceptors) with the following transition table for
Ξ:
Let π€ = 001100 β πΏ(π). A configuration sequence of π that
recognizes π€ is: (π1, 001100, #) β (π1, 01100, π΅#) β (π1, 1100,
π΅π΅#) β (π1, 100, πΊπ΅π΅#) β(π2, 00, π΅π΅#)
β (π2, 0, π΅#) β (π2, π, #) β (π2, π, π) β accepted
Find two other configuration sequences (not necessarily
accepting)
Describe the language that π accepts.
Find a grammar that generates this language.
A(91,0, #) = {(9β, B#} A(9β,1, #) = {(91, G#} A(91,0, B) = {(91, BB), (92, β¬)} A(91, 0, G) = {(9β, BG)} A(91,1,B) = {(q1, GB)) A(91,1,G) = {(9β, GG), (92, β¬)} A(92,0, B) = {(92, β¬)} A(92,1,G) = {(92, β¬)} A(qβ, E, #) = {(92, Ξ΅)} A(92, E, #) = {(92, β¬)}
Given the PDA 𝑀 = ({𝑞1, 𝑞2}, {0, 1}, {#, 𝐵, 𝐺}, Ξ, 𝑞1, #, β ) (empty-cell
-
- Site Admin
- Posts: 899603
- Joined: Mon Aug 02, 2021 8:13 am